

SYSTEM ANALYSIS OF SPACE INDUSTRY PROJECTS AND ORBITAL COMPLEX DYNAMICS AND CONTROL

*Institute of Technical Mechanics
of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine
15 Leshko-Popel St., Dnipro 49005, Ukraine; e-mail:aalpatov@ukr.net*

This paper analyzes the scientific results obtained at the Department of System Analysis and Control Problems of the Institute of Technical Mechanics of the National Academy of Sciences of Ukraine and the State Space Agency of Ukraine. When the department was established, its lines of investigation were defined as follows: the study of free and controlled modes of operation of spatially developed transformable ground and space mechanical systems under a broad gamut of input actions and system analysis of space industry problems. For the past five years, investigations have been conducted along several lines: launch vehicle design parameter optimization, spacecraft and space complex dynamics, tethered space systems, large-size transformable space structures, space manipulator dynamics, orbital service system ballistics, the space debris problem, system analysis of space industry problems – the development of cognitive analysis technologies, and molecular gas dynamics problems.

With account for the features of the state of the art in the development of space technologies and the corresponding lines of investigation, trends in the formation of the space technology physiognomy were revealed: (i) component miniaturization and the development of small-size spacecraft platforms based thereon and (ii) the widening of the scope of engineering problems involving the industrial development of near-Earth space using large-size space structures.

These trends in the development of space technologies determine new and modified scientific lines of space investigations. In this context, the following lines of further investigations are now being formed at the department: the development of a new space debris mitigation concept based on the use of space debris as a resource for industrial production at orbital complexes, the development of new approaches to extending the active life of spacecraft based on space servicing technologies with the use of models and methods of risk assessment and information security, the elaboration of basic principles for the development of platforms for industrial production in near-Earth space carrying a power, a production, and a service module, and further development of control principles and technologies for large space structures and spacecraft groupings.

Keywords: *system analysis, cognitive models, spacecraft dynamics, mathematical models, structural and parametric identification, space debris, tethered systems, controllable rocket objects, launch vehicles, solar space power stations, orbital servicing, probe particle method, vacuum aerodynamic apparatus.*

1. Alpatov A., Cichocki F., Fokov A., Khoroshyllov S., Merino M., Zakrzhevskii A. Determination of the force transmitted by an ion thruster plasma plume to an orbital object. *Acta Astronautica*. 2016. No. 119. Pp. 241 – 251.
2. Alpatov A. P., Fokov A. A., Khoroshyllov S. V., Savchuk A. P. Error Analysis of Method for Calculation of Non-Contact Impact on Space Debris from Ion Thruster. *Mechanics. Materials Science & Engineering*. 2016. No. 5. Pp. 64 – 76.
3. Sarycheva L., Sarychev A. GMDH-Clustering GMDH-Methodology and Implementation in C. Editor Godfrey Onwubolu, London : Imperial College Press, 2015. Pp. 157 – 203.
4. Alpatov A. P., Gusynin V. P., Belonozhko P. P., Fokov A. A., Khoroshyllov S. V. Shape control of large reflecting structures in space. Proceeding of the 62nd International Astronautical Congress. Cape Town, South Africa, 2011. (3 – 7 October 2011). vol. 7. IAC – 11.C2.3.6. Pp. 5642 – 5648.
5. Alpatov A. P., Gusynin V. P., Belonozhko P. P., Fokov A. A., Khoroshyllov S. V. Configuration modeling of cable-stayed space reflectors. Proceeding of the 64nd International Astronautical Congress. Beijing. China. 2013. (23 – 27 September 2013). Vol. 8. IAC – 13.C2.3.4. Pp. 5794 – 5799.
6. Alpatov A., Khoroshyllov S., Bombardelli C. Relative control of an ion beam shepherd satellite using the impulse compensation thruster. *Acta Astronautica*. 2018. No. 151. Pp. 543 – 554.
7. Shuvalov V. A., Gorev N. B., Tokmak N. A., Pis'mennyi N. I., Kochubei G. S. Control of the drag on a spacecraft in the earth's ionosphere using the spacecraft's magnetic field. *Acta Astronautica*. 2018. V. 151. Pp. 717 – 725.
8. Shuvalov V. A., Tokmak N. A., Pis'mennyi N. I., Kochubei G. S. Dynamic interaction of a magnetized body with a rarefied plasma flow. *Journal of Applied Mechanics and Technical Physics*. 1016. V. 57. No. 1. Pp. 145 – 152.
9. Abramovskaya M. G., Aksiutenko A. M., Bass V. P., Efimov Yu.P. Laboratory and full-scale experiments on gas-dynamic processes in the vicinity of spacecraft and on the surface thereof (in Russian). *Outer Space*

- Model. V. 2. Exposure of Spacecraft Materials and Equipment to the Space Environment. A. S. Novikov (Ed.). Moscow: KDU, 2007. 1144 pp.
10. Alpatov A. P., Paliy A. S., Skorik A. D. Aerodynamic systems for removing space objects (*in Russian*). Teh. Meh. 2015. No. 4. Pp. 126 – 138.
 11. Alpatov A. P. Space Vehicle Dynamics (*in Russian*). Kyiv: Naukova Dumka, 2016. 488 pp.
 12. Alpatov A. P., Paliy O. S., Skorik O. D. The development of structural design and the selection of design parameters of aerodynamic systems for de-orbiting upper-stage rocket launcher (*in Ukrainian*). Science and Innovation. 2017. V. 13, No. 4. Pp. 33 – 45.
 13. Alpatov A. P., Marchenko V. T., Khorolskyi P. P. Sazina, N. P. Methodology for financial and economic feasibility of conceptual problems in rocket-space industry (*in Ukrainian*). Kosm. Mauka Tehnol. 2014. V. 20. No. 6. Pp. 49 – 59.
 14. Alpatov A. P., Marchenko V. T., Sazina N. P., Khorolsky P. P. Methodological approach to technical and economic feasibility of projects for new space technology products (*in Russian*). Teh. Meh. 2015. No. 3. Pp. 3 – 17.
 15. Alpatov A. P., Marchenko V. T., Sazina N. P., Khololskyi P. P., Zhukova L. H. On a methodological approach to the problem of quantitative risk assessment for space hardware development projects (Part 1) (*in Russian*). Teh. Meh. 2018. No. 1. Pp. 84 – 96.
 16. Alpatov A. P., Bombardelli C., Khoroshyllov S. V. Conceptions of the active space debris (*in Russian*). Kosm. Nauka Tehnol. 2015. V 21. No. 6. Pp.. 60 – 65.
 17. Alpatov A. P., Zakrzhevskii A. E., Merino M., Fokov A. A., Khoroshyllov S. V., Cichocki F. Determination of a force transmitted by a plume of an ion thruster to an orbital object (*in Russian*). Kosm. Nauka Tehnol. 2016. V. 22. No. 1. Pp. 52 – 63.
 18. Alpatov A. P., Zakrzhevskii A. Ye., Fokov A. A., Khoroshilov S. V. Determination of optimal position of "ion beam shepherd" with respect to space debris object (*in Russian*). Teh. Meh. 2015. No. 2. Pp. 37 – 48.
 19. Alpatov A. P., Marchenko V. T., Prokopchuk Yu. A. Sarychev A. P., Khoroshyllov S. V. System Analysis and Complex System Control under Uncertainty (*in Russian*). Dnepropetrovsk: Gerda, 2015. 195 pp.
 20. Alpatov A. P., Maslova A. I., Khoroshyllov S. V. Contactless Space Debris Deorbiting by an Ion Beam. Dynamics and Control (*in Russian*). Lambert Academic Publishing, Saarbucken, Deutchland. 2018. 337 pp.
 21. Alpatov A. P., Goldstein Yu. M. Ballistic analysis of orbits distribution of spacecraft for different functional missions (*in Russian*). Teh. Meh. 2017. No. 2. Pp. 33 – 40.
 22. Alpatov A. P. Space debris: the aspects of the problem (*in Russian*). Teh. Meh. 2018. No. 1. Pp. 30 – 47.
 23. Alpatov A. P., Holdstein Yu. M. Orbital servicing operation routing technique (*in Russian*). Proceedings of the 18th Ukrainian Conference on Space Research. Kyiv, 2018. P. 123.
 24. Alpatov A. P., Senkin V. S. Methodic support for selecting an aspect, optimization of design parameters and control in-flight programs for launch vehicle (*in Russian*). Teh. Meh. 2013. No. 4. Pp. 146 – 161.
 25. Alpatov A. P. Dynamics of advanced spacecraft (*in Ukrainian*). Visn. Nac. Akad. Nauk. Ukr. 2013. No. 7. Pp. 6 – 13.
 26. Alpatov A. P., Belonozhko P. A., Belonozhko P. P., Grigor'ev S. V., Tarasov S. V., Fokov A. A. Simulation of mobile-base space manipulator dynamics (*in Russian*). Robototekhnika i Tekhnicheskaya Kibernetika. 2013. No. 2. Pp. 61 – 65.
 27. Alpatov A. P., Belonozhko P. P., Grebenkin F. N., Tarasov S. V., Fokov A. A., Khoroshilov V. S. Methodic aspects of simulation of attitude of equipment mounted on spacecraft sliding rods (*in Russian*). Teh. Meh.. 2013. No. 2. Pp. 12 – 17.
 28. Artemenko Yu. N., Belonozhko P. P., Karpenko A. P., Sayapin S. N., Fokov A. A. Use of parallel mechanisms in payload–spacecraft relative positioning (*in Russian*). Robototekhnika i Tekhnicheskaya Kibernetika. 2013. No. 1. Pp. 65 – 71.
 29. Artemenko Yu. N., Belonozhko P. P., Karpenko A. P., Fokov A. A. Research of massive payload targeting features using a space manipulator taking into account a movable platform in conditions free of outside forces (*in Russian*). Science & Education. Bauman Moscow State Technical University. 2014. No. 12. Pp. 682 – 704.
 30. Bass V. P. Molecular Gas Dynamics and its Applications in Rocket and Space Technology (*in Russian*). Kyiv: Naukova Dumka, 2008. 270 pp.
 31. Belonozhko P. P., Karpenko A. P., Fokov A. A. Some features of the dynamics of a mobile base – manipulator – payload space system (*in Russian*). Extreme Robotics: Proceedings of the International Scientific and Technical Conference. St. Petersburg: Politekhnika-Servis, 2014. Pp. 172 – 181.
 32. Voloshenyuk O. L. Mathematical model of end body dynamics in motion of space tether system stabilized by rotation (*in Russian*). Teh. Meh. 2017. No. 1. Pp. 57 – 64.
 33. Lapkhanov E. O., Paliy O. S. Analysis of the possibility to use a propulsion system with permanent magnets for spacecraft in a near-Earth orbit (*in Ukrainian*). System Technologies. 2018. No. 4. P. 24 – 35.
 34. Makarov A. L., Khoroshyllov S. V. Attitude control of solar battery and transmitting antenna for space solar power satellite (*in Rusian*). Kosm. Nauka Tehnol. 2012. V. 18. No. 3. Pp. 3 – 9.
 35. Mamchuk V. M., Savonik O. M., Zhukova L. G. An approach to determination of parameters of space technology (*in Russian*). Teh. Meh. 2013. No. 1. Pp. 96 – 102.
 36. Marchenko V. T., Syutkina-Doroina S. V., Sazina N. P. On the method of simulation of uncertainties of technical and economical data for problems of evaluation of research projects (*in Russian*). Teh. Meh. 2016. No. 2. Pp. 137 – 146.

37. *Marchenko V. T., Khorolskyi P. P., Sazina N. P., Zhukova L. H.* Algorithm to assess the technical level of Earth remote sensing spacecraft (in Russian). Teh. Meh. 2017. No. 4. Pp. 41 – 48.
38. *Marchenko V. T., Petlyak Ye. P., Sazina N. P., Khorolsky P. P.* New method of engineering evaluation of spacecraft for earth remote sensing (in Russian). Teh. Meh. 2017. No. 2. Pp. 41 – 50.
39. *Maslova A. I., Pirozhenko A. V.* Orbit changes under the small constant deceleration (in Russian). Kosm. Nauka Tehnol. 2016. V. 22. No. 6. Pp. 20 – 25.
40. *Maslova A. I.* Oscillations of small space tether system exposed to aerodynamic moment (in Russian). Teh. Meh. 2016. No. 3. Pp. 57 – 67.
41. *Maslova A. I.* Simplified model of the action of an ion beam on a spherical target (in Russian). Advances in Science: Proceedings of the Veles International Scientific and Practical Conference. Kyiv: Center of Scientific Publications, 2017. Pp. 24 – 31.
42. *Maslova A. I., Mischenko A. V., Pirozhenko A. V., Khramov D. A.* Research of dynamic regularities of electrodynamic space tethered system as a possible highly efficient passive deorbit systems for space debris at the low earth orbits (in Russian). Kosm. Nauka Tehnol. 2015. V. 21. No. 1. Pp. 20 – 24.
43. *Maslova A. I.* Simplified analytical model of the force action of an ion beam on a sphere (in Russian). Teh. Meh. 2018. No. 1. Pp. 97 – 106.
44. *Mishchenko O. V.* On the determination of the tether length for an experimental electrodynamic system (in Russian). Teh. Meh. 2017. No. 4. Pp. 55 – 63.
45. *Pirozhenko A. V., Mischenko A. V.* Small experimental electrodynamic space tether system. Electrical model. (in Russian). Kosm. Nauka Tehnol. 2018. No. 3. . Pp. – 10.
46. *Palyi A. S.* Development of a technique for designing aerodynamic systems to remove spacecraft from near-Earth orbits (in Russian). Eastern-European Journal of Enterprise Technologies. Information and Control Systems. 2015. No. 1. Pp. 11 – 15.
47. *Palyi A. S., Skorik A. D.* Analysis of use of aerodynamic systems to deorbit modular large-sized space objects from low near-earth orbits . Teh. Meh. 2014. No. 2. Pp. 43 – 51.
48. *Palyi O. S., Alpatov A. P., Skorik O. D.* Method and system to remove space objects from near-Earth orbits (in Ukrainian): Patent 109318 Ukraine: IPC B 64 G 1/62, No. 109318; 20131326; filed Nov. 14, 2013; published Aug. 10, 2015, Bulletin No. 15. 11 pp.
49. *Palyi O. S., Alpatov A. P., Pylypenko O. V., Skorik O. D.* Method and spacecraft to shorten the ballistic life of space objects in near-Earth orbits (in Ukrainian): Patent 113747 Ukraine: IPC B 64 G 1/62; 201407652; filed July 07, 2014; published Mar. 10, 2017, Bulletin No. 5. 11 pp.
50. *Palyi O. S., Alpatov A. P., Skorik O. D., Avdieiev A. N., Baranov Ye. Yu.* Aerodynamic system to remove space objects from near-Earth orbits (in Ukrainian): Patent 109194 Ukraine, IPC B 64 G 1/62; 201312759; filed Nov. 01, 2013; published July 27, 2015, Bulletin No. 14. 12 pp.
51. *Pecheritsa L. L., Palyi O. S.* Application of the method of probe particles to the aerodynamic calculation of spacecraft (in Russian). Teh. Meh. 2017. No. 3. Pp. 64 – 70.
52. *Pecheritsa L. L.* Numerical studies of paralleling test particles method using statistic independent tests (in Russian). Teh. Meh. 2015. No. 2. Pp. 100 – 109.
53. *Pecheritsa L. L., Smelaya T. G.* Numerical simulation of axisymmetric flow past extended compound body using test particles method with hierachic grids (in Russian). Teh. Meh. 2016. No. 2. Pp. 64 – 70.
54. *Pirozhenko A. V., Maslova A. I.* On the dynamics of rigid body. Moments of centrifugal accelerations (in Russian). Teh. Meh. 2013. No. 3. Pp. 63 – 71.
55. *Pirozhenko A. V., Maslova A. I., Mischenko A. V., Khramov D. A., Voloshenjuk O .L.* Project of a small experimental electrodynamic space tether system (in Russian). Kosm. Nauka Tehnol. 2018. No. 2. Pp. 3 – 11.
56. *Prokopchuk Yu. A.* Principle of Limiting Generalizations: Methodology, Problems, and Applications (in Russian). Dnipro: ITM of NASU and NSAU, 2012. 384 pp.
57. *Prokopchuk Yu. A.* Intelligent Medical Systems: Formal Logical Level (in Russian). Dnipro: ITM of NASU and NSAU, 2007. 259 pp.
58. *Prokopchuk Yu. A.* Sketch of a Formal Creativity Theory (in Russian). Dnipro: GVUZ "PGASA", 2017. 452 pp.
59. *Prokopchuk Yu. A.* Paradigm of Limiting Generalizations: Models of Cognitive Architectures and Processes (in Russian). Saarbrucken, Deutschland: LAP LAMBERT Academic Publishing, 2014. 204 pp.
60. *Savchuk A. P., Fokov A. A., Khoroshilov S. V.* Computations of contactless effects on space debris object using its known contour (in Russian). Teh. Meh. 2016. No. 1. Pp. 26 – 37.
61. *Sarychev A. P.* Parameter identification of systems of autoregressive equations with random coefficients of known covariance matrices (in Russian). Problemy Upravleniya i Informatiki. 2013. No. 5. Pp. 33 – 52.
62. *Sarychev A. P.* Linear autoregression based on the group method of data handling in conditions of quasirepeated observations (in Russian). Artificial Intelligence. 2015. No. 3-4 (69–70). Pp. 105 – 123.
63. *Sarychev A. P.* Linear regression with random coefficients based on the group method of data handling (in Russian). Upr. Sist. Maš. 2015. No. 3. Pp. 13 – 20.
64. *Sarychev A. P.* Simulation in the class of systems of autoregressive equations with random coefficients under structural uncertainty (in Russian). System Technologies of Complex Process Simulation: A. I. Mikhalev (Ed.). Dnipro: NMAU-ICC "System Technologies", 2016. Pp. 463 – 499.
65. *Sarychev A. P.* Simulation in the class of systems of autoregressive equations under structural uncertainty. Problemy Upravleniya i Informatiki. 2015. No. 4. Pp. 79–103.
66. *Sarychev A. P.* Simulation in the class of systems of regression equations based on the group method of data handling (in Russian). Problemy Upravleniya i Informatiki. 2013. No. 2. Pp. 8 – 24.

67. Sarychev A. P., Sarycheva L. V. Discriminant analysis problem solution based on the group method of data handling (*in Russian*). Upr. Sist. Maš. 2013. No. 2 (244). Pp. 18 – 27.
68. Senkin V. S., Sarychev A. P. Choice of design parameters and control programs at the initial stage of launch vehicle design (*in Russian*). Teh. Meh. 2014. No. 3. Pp. 33 – 47.
69. Senkin V. S., Syutkina-Dorонина S. V. Studies of effects of variations in parameters of controlled rocket object on flying range (*in Russian*). Teh. Meh. 2016. No. 4. Pp. 35 – 49.
70. Senkin V. S., Syutkina-Dorонина S. V. Study of objective functional sensitivity to controlled rocket design parameter variations (*in Russian*). Aviatsionno-Kosmicheskaya Tekhnika i Tekhnologiya. No. 3 (130). Pp. 9 – 17.
71. Senkin V. S. On the statement of problem of optimization in design parameters of solid rocket engine (*in Russian*). Teh. Meh. 2014. No. 4. Pp. 39 – 52.
72. Senkin V. S. On the choice of spacecraft and solid-propellant apogee engine parameters (*in Russian*). Teh. Meh. 2015. No. 3. Pp. 18 – 29.
73. Senkin V. S. Selection of parameters of solid retrorocket engine for spacecraft deorbiting (*in Russian*). Teh. Meh. 2016. No. 1. Pp. 38 – 50.
74. Senkin V. S. On the choice of programs to control rocket motion along a ballistic trajectory (*in Russian*). Teh. Meh. 2018. No. 1. Pp. 48 – 59.
75. Smelaya T. G. Selection of computational grid for simulation of rarified gas flows using test particles method (*in Russian*). Teh. Meh. 2013. No. 1. Pp. 45 – 60.
76. Smelaya T. G. Unstructured grids and their applications to numerical simulation using test particles method (*in Russian*). Teh. Meh. 2015. No. 4. Pp. 155 – 168.
77. Syutkina S. V. Mathematical model of determination of allowable errors region of parameters for mounting the launch vehicle on launching table (*in Russian*). Teh. Meh. 2013. No. 2. Pp. 26 – 35.
78. Syutkina-Dorонина S. V. On the optimization of the design parameters and control programs of a solid-propellant rocket (*in Russian*). Aviatsionno-Kosmicheskaya Tekhnika i Tekhnologiya.. 2017. 2 (137). Pp. 44 – 59.
79. Tarasov S. V., Fokov A. A. Model problems for class of systems for mutual positioning spacecraft and payload (*in Russian*). Teh. Meh. 2017. 2. .20 – 32.
80. Fokov . ., Khoroshilov S. V. Validation of a simplified method for calculating the force exerted by a an electrojet engine plume on an orbital object (*in Russian*). Aviatsionno-Kosmicheskaya Tekhnika i Tekhnologiya. 2016. No. 2/129. Pp. 55 – 66.
81. Astapenko V. N., Marchenko V. T., Sazina N. P., Khorolsky P. P. Assessment of demand of national market for information on Earth remote sensing (*in Russian*). Teh. Meh. 2016. No. 1. Pp. 60 – 73.
82. Astapenko V. N., Marchenko V. T., Sazina N. P., Khorolsky P. P. Analysis of capabilities of national information market for remote sensing at high resolution as to 2015 (*in Russian*). Teh. Meh. 2016. No. 3. Pp. 68 – 76.
83. Khoroshyllov S. V. Analysis of the robustness of the system to control the relative motion of an ion beam shepherd (*in Russian*). Teh. Meh. 2018. No. 1. Pp. 48 – 58.
84. Khoroshilov S. V. On solar space power station attitude control algorithms. Part 2 (*in Russian*). System Technologies. 2012. Issue 2(61). Pp. 12 – 24.
85. Alpatov A. P., Zakrzhevskii A. Ye., Fokov A. A., Khoroshilov S. V. Determination of optimal position of ion-beam shepherd with respect to space debris object (*in Russian*). Teh. Meh. 2015. No. 2. Pp. 37 – 48.
86. Khoroshilov S. V. Synthesis of observer of extended state vector considering requirements for closed loop of control given in frequency domain (*in Russian*). Teh. Meh. 2016. No. 1. Pp. 11 – 25.
87. Khoroshilov S. V. Synthesis of robust controller for ion beam shepherd control system (*in Russian*). Teh. Meh. 2017. No. 1. Pp. 26 – 39.
88. Khoroshilov S. V. Synthesis of suboptimal compensators of disturbances in form of observer of extended state vector (*in Russian*). Teh. Meh. 2014. No. 2. Pp. 79 – 92.
89. Khoroshilov S. V. Relative motion control system of spacecraft for contactless space debris removal (*in Ukrainian*). Science and Innovation. 2018. V. 14. No. 4. Pp. 5 – 8.
90. Khoroshilov S. V. Motion simulation of a space power station with two solar reflectors (*in Russian*). Teh. Meh. 2012. No. 3. Pp. 85 – 97.
91. Khramov D. A. Analysis of ways and models of deployment of space tethered systems (*in Russian*). Teh. Meh. 2014. No. 4. Pp. 198 – 204.
92. Shuvalov V. A., Kuchugurnyi Yu. P. Experimental substantiation of effectiveness of conception of artificial mini-magnetosphere as a means of spacecraft motion controlling in the Earth ionosphere (*in Russian*). Kosm. Mauka Tehnol. 2018. V. 24. No. 2. Pp. 43 – 46.
93. Shuvalov V. O., Dehtarenko P. H., Symanov V. H., Khorolskyi P. H., Loboda P. I. Space object orbit transfer method (*in Ukrainian*). Patent 125625 Ukraine, IPC B64G 1/00, B64G 1/10, B64G 1/24. u2017 09603; filed Oct. 2, 2017; published May 10, 2018.

Received on July 24, 2018,
in final form on September 28, .2018